Webinar

Discover how Bristol-Myers Squibb uses electron-activated dissociation (EAD) to confidently identify drug metabolites and localize site of metabolism.

On-demand

During drug metabolite identification (Met ID) studies collision-induced dissociation (CID) is the most commonly used fragmentation technique for LC-MS experiments. Many conjugation metabolites are found to have multiple bonding potentials to parent drugs. It is a great challenge to locate the bonding sites by CID due to the information lost by highly selective cleavage on these bonds. 

The novel electron-activated dissociation (EAD) is a recently developed technology on the SCIEX ZenoTOF 7600 system. From a single LC-MS/MS experiment CID and EAD data can be collected, providing information rich fragmentation spectra. The additional information can help in confident localization and identification of metabolites compared to CID alone. These fragments can be crucial to locate the metabolic modification sites, such as conjugations. 

In this study, the application of EAD in drug metabolite profiling is explored. The efficiency in the structural elucidation of conjugation metabolites is compared with that of CID.

Webinar Learning Objectives:

  • Learn how EAD can be advantageous in confident identification and localization of drug metabolites
  • Discover the sensitivity of the Zeno trap technology in the identification of the low abundant metabolites
  • Explore the capabilities of the Molecule Profiler software in processing EAD and CID data for drug metabolite identification

Ming Yao

Principal Scientist, CPPDB, Bristol-Myers Squibb

Ming Yao currently works at Bristol-Myers Squibb (BMS). He received his B.Sc. from Henan University, and his M.Sc. from the Chinese Academy of Preventive Medicine China. After graduation, he worked at the Institute of Occupational Medicine as an associate professor.

As a visiting Associate Professor, he conducted research for bioactivation of chemicals at Merck as well as the University of Western Ontario. After then, he joined BMS and he was responsible for designing and conducting in vitro and in vivo biotransformation studies for multiple programs to support both development and discovery projects. Most recently, he has also been involved in the development of protein drugs, such as the antibody drug conjugates (ADCs) and biotransformation of biologics.

Ming has over 28 years of experiences in the pharmaceutical industry and has over 50 publications and 5 book chapters covering new technologies of mass spectrometry and its applications in drug metabolism.

Rahul Baghla

Manager Pharma Applications, SCIEX

Rahul Baghla, Manager Pharma Applications is a research scientist with 12+ years of experience in various applications of mass spectrometry delivering in Pharma/Biopharma/CRO industries. He is specialised in implementing new mass spectrometry technologies in bioanalytical/analytical method development/validation, drug discovery, ADME assays and clinical studies.

He has supported various functions within pharma industry including nutrition, wellness, and oral care based clinical trial studies over the years. Rahul has master’s degree in pharmaceutical analysis, master’s in business administration and a professional diploma in clinical research.

He is responsible for continuous engagement with pharmaceutical community to identify major analytical challenges, provide solutions and to find significant analytical opportunities for SCIEX.